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Free-surface flows past a submerged triangular obstacle a t  the bottom of a channel 
are considered. The flow is assumed to be steady, two-dimensional and irrotational ; 
the fluid is treated as inviscid and incompressible and gravity is taken into account. 
The problem is solved numerically by series truncation. It is shown that there are 
solutions for which the flow is subcritical upstream and supercritical downstream and 
other flows for which the flow is supercritical both upstream and downstream. The 
latter flows have limiting configurations with a stagnation point on the free surface 
with a 120' angle at it. It is found that solutions exist for triangular obstacles of 
arbitrary size. Local solutions are constructed to describe the flow near the apex 
when the height of the triangular obstacle is infinite. 

1. Introduction 
Free-surface flow past an obstacle a t  the bottom of a channel is considered. The 

fluid is assumed to be inviscid and incompressible and the flow to be steady and 
irrotational. Far upstream the flow is uniform with constant velocity r?: and constant 
depth r? (see figure la) .  We define the upstream Froude number - 

Here g denotes the acceleration due to gravity. The upstream flow is said to be 
subcritical when 

Lamb (1945) calculated the flow past a submerged semi-elliptical obstacle by an 
approximate linear theory. He obtained solutions with a train of waves downstream 
for < 1 and solutions without waves for f' > 1. Recently Forbes & Schwartz (1982) 
and Forbes (1981) solved the corresponding exact problem numerically. They 
considered both semicircular and semi-elliptical obstacles. Their results confirm and 
extend Lamb's solutions. 

In  this paper we calculate the flow past a submerged triangular obstacle by a series 
truncation procedure. This technique has been used successfully by Brodetsky 
(1923), Birkhoff & Zarantonello (1957), Vanden-Broeck (1984), Vanden-Broeck & 
Keller (1987), and Dias, Keller & Vanden-Broeck (1988) to calculate nonlinear free- 
surface flows. Solutions with waves downstream are not considered in this paper. 
Therefore, we assume that the flow approaches a uniform stream with constant 
velocity U and constant depth H far downstream and we define the downstream 

< 1 and supercritical when P > 1. 

~ 

Froude number F by U F = -  
(gH);' 
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FIGURE 1. (a)  Sketch of the flow and of the coordinates. Six special points-are labelled on the 
b_oundary. The flow is uniform far upstream and downstream with velocities U and U ,  and depths 
Hand H .  The obstacle is a triangle of height W. The free-surface profile is a computed solution for 
t ,  = 0.70. The vertical scale is the_same as the horizontal scale. The corresponding values of the 
Froude numbers are F = 1.87 and F = 0.49. ( b )  The complex potential plane. The images of the six 
points are shown. (c) The complex t-plane. The images of the six points are shown. 

Our results show that there are solutions without waves for which the flow is 
subcritical upstream (i.e. 9 < 1 )  and supercritical downstream (i.e. F > 1) .  The flows 
far upstream and far downstream are conjugate flows (Benjamin 1966). Such flows 
were recently calculated by Forbes (1988) for a submerged semicircular obstacle. Our 
results for small triangles are qualitatively similar to those of Forbes. We show that 
there are solutions for triangles of arbitrary size. As the size of the triangle increases, 
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F+ 0 and F + co. The corresponding limiting configuration near the apex of the 
triangle is a flow past an angle with one free surface which runs along the wall 
downstream (see figure 4). We calculate this limiting solution by using the numerical 
procedure derived by Vanden-Broeck & Keller (1986) to compute pouring flows. 

We also calculate solutions that are supercritical both upstream and downstream. 
These solutions are characterized by F = > 1. It is found that for a given triangle 
these supercritical solutions exist only for values of F greater than some particular 
value. Furthermore, for some values of F ,  there are two supercritical solutions. One 
is a perturbation of a uniform stream whereas the other is a perturbation ofa  solitary 
wave. These results are similar to those obtained by Vanden-Broeck (1987) for the 
flow past a semicircular obstacle. We show that for any given triangle there is a 
limiting configuration with a stagnation point on the free surface with a 120' angle 
a t  it (see figure 8). Furthermore we found that solutions exist for triangles of 
arbitrary size. As the size of the triangle increases the limiting flow near the apex of 
the triangle is a flow past an angle with one free surface running along the walls 
downstream and upstream (see figure 9). We calculate these flows for various angles. 

The problem is formulated in $2, and the various solutions and limiting 
configurations are presented in $93-6. 

2. Formulation of the problem 
We consider the steady irrotational flow of an incompressible inviscid fluid over a 

triangular obstacle (see figure l a ) .  A system of Cartesian coordinates is defined, with 
the x-axis along the bottom and the y-axis going through the apex of the triangle. 
Gravity acts in the negative y-direction. As 1x1 + 00, the flow approaches uniform 
streams with velocity 0 and depth B upstream, and velocity U and depth H 
downstream. The upstream Froude number 9 and the downstream Froude number 
F are defined by (1 .1)  and (1.2) respectively. We define the discharge 

Q = UH = Oil. (2.1) 

The pressure is assumed to be constant on the free surface. By using the Bernoulli 
equation we write this condition as 

(2.2) h2 + gy = constant on free surface. 

Here q denotes the magnitude of the velocity. 

types of solutions. Evaluating (2.2) a t  x = 
Following Binnie (1952) we use (2.1) and (2.2) to show that there are two different 

co we obtain 

+V+gH = t@"+gr?. (2.3) 
Combining ( l . l ) ,  (1.2), (2.1) and (2.3) we find after some algebra 

Here 

(p-1) g@(p+l) - -  = o .  [ P 'I 
H 

/ A = = - - .  
H 

Relation (2.4) shows that the two types of solutions correspond to 
n 

and p =  1.  (2.7) 
li-2 
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For the type (2 .6 )  it can easily be shown that @ <  1 ,  F 2 1 when ,u < 1 and that 
P 2 1, F < 1 when ,u 2 1. In  this paper we assume ,u < 1 (see figure 1 a) .  Therefore 
the flow is subcritical upstream and supercritical downstream. These solutions 
are calculated in 93. For the type ( 2 . 7 )  it follows from (2 .1 )  and (2 .5 )  that U = 8, 
H = fi and P = F .  These solutions are considered in $5. 

We introduce dimensionless variables by taking (Q2/g)i as the unit length and (Qg);  
as the unit velocity. The dimensionless discharge is now equal to 1. We define the 
complex potential f = q5+i$ in terms of the potential q5 and the stream function $. 
Since q5 and $ are conjugate solutions of Laplace's equation, f is an analytic function 
of z = x+iy. The bottom of the channel and the triangle are parts of a streamline on 
which we require 31. = 0. The free surface is another streamline on which $ = 1. In 
terms of the dimensionless variables, the condition (2 .2 )  becomes 

( 2 . 8 )  

The flow problem can be reduced to a problem in complex analysis. The complex 
potential f maps the flow domain conformally onto an infinite strip of height 1 ,  as is 
shown in figure 1 ( b ) .  Without loss of generality, we chose #J = 0 a t  the apex of the 
triangle (point 2 ) .  We map this infinite strip onto the upper half of the unit disk with 
I and J corresponding to the points - 1 and 1, respectively (see figure 1 c ) ,  so that the 
solid boundary goes onto the real diameter and the free surface onto the upper half- 
unit circle. The images of 1 , 2  and 3 are t,, t ,  = 0 and t , ,  respectively. The map is given 

( V # ~ ) ~ + 2 y  = constant on $ = 1. 

2 l + t  
f = -1n- 

7c l - t '  (2 .9 )  

The problem is now to find an analytic function z ( t )  satisfying the boundary 
condition (2.8) and mapping the streamline $ = 0 into the channel bottom and the 
obstacle. We proceed indirectly by introducing the hodograph variable 

((2) = - ( z )  df = u-iv. 
dz 

(2.10) 

The quantities u and v are the x- and y-components of velocity, respectively. Then 
the problem becomes that of finding f ;  as an analytic function o f t  satisfying 

(2 .11)  + 2y = constant on It1 = 1 

and the kinematic boundary condition on the real diameter ( -  1 < t < 1 ) .  

3. Solutions with subcritical flow upstream and supercritical flow 
downstream 

In this section we consider the solutions corresponding to (2 .6 ) .  We assume that 
,LL < 1 so that the flow is subcritical upstream and supercritical downstream (see 
figure 1 a) .  

Since there are angled corners a t  t = t , ,  t = 0 and t = t,, 5 must have singularities 
at these points. The appropriate singularities are 

The angles ul ,  a, and a3 satisfy the relation a, + az + a3 = 3x. 
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As $++a, the flow approaches a uniform supercritical stream. Therefore the 
asymptotic form of [ as $ --f + 00 is obtained by linearizing the equations around a 
uniform stream and solving the resultant equations by separation of variables. This 
leads to 

Here E and D are constants and h is the smallest positive root of 

[ -E+De-u  as $++XI. (3.4) 

F2h-tanh = 0. (3.5) 

6 - fl(l)+A(l-t)2? (3.6) 

In terms of the transformation (2.9) from f to t we rewrite (3.4) as 

We now define the function Q(t )  by the relation 

The function Q ( t )  has the following expansion 
m 

Q(t )  = ~ 4 ( 1 - t ) ~ ” ~ +  C antn 
n-0 

The kinematic boundary conditions on the channel bottom and on the obstacle 
imply that the coefficients a, are real. It can be checked that (3.7) in conjunction 
with (3.8) satisfies (3.1)-(3.4). The unknown real coefficients a, and the constant A 
must be determined to satisfy the dynamic boundary condition (2.11) on the free 
surface. 

Points on the free surface can be represented by t = eiO (0 < r < 7 ~ ) .  It is 
convenient to eliminate y from (2.11) by differentiating (2.11) with respect to v. 
Using (2.9) and the identity 

(3.9) 
ax ay 

a$ 
-+i- = 6-1 

(3.10) 

We now set t = eiu in (3.7) and (3.8) to get [(ei“) and substitute that expression in 
(3.10). We shall use the resulting equation to determine the coefficients a,. 

To do so we truncate the infinite series in (3.8) after N-4 terms. The calculations 
were restricted to isoceles triangles with a right angle at the apex. Thus we set 
x1 = :n,x2 = gn,x3 = $ 7 ~ .  We fix the geometry of the triangle by specifying a value 
fort,. We find the Nunknowns t , ,  A, F ,  A and {a,}fi~ by collocation. Thus we introduce 
the N-3 mesh points 

7c 
UM=- (M-a) ,  M =  1,  ..., N--3 

N- 3 

and satisfy (3.10) a t  these points. This leads to N- 3 nonlinear algebraic equations. 
Relation (3.5) provides another equation. The last two equations are obtained by 
relating F to the velocity downstream and by rewriting (2.6) in terms of E.  This leads 

(3.11) 
to 

F = l6(1)12, 

(3.12) 
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This system of N nonlinear equations with N unknowns is solved by Newton's 
method. The ZSPOW package of the IMSL library was used for the computations. 

Once this system is solved we can evaluate the complex velocity 6 by using (3.7). 
The upstream Froude number P is given by the formula 

P = It( - 1 )  1:. (3.13) 

Next we calculate the profile of the free surface by integrating numerically (3.9) 
along the unit circle. This leads to 

(3.14) 

In  order to evaluate Z ( ~ T C )  we first calculate the height W of the triangle by integrating 

(3.15) 

I n  (3.15) we used the fact that  a, = $t. The value of z a t  the point 2 is z2 = iW. We 
obtain z($?T) by integrating (3.9) along the imaginary axis in the t-plane: 

(3.16) 

The coefficients a, were found to decrease rapidly. For example, for W = 0.34, 
lall - 2 x - lop6. Most of the calculations were 
performed with N = 40. However, for large triangles the coefficients a, decrease less 
rapidly and N was increased to  135. For W = 1.1 ,  lal! - lo-', la21 - 3 x lo-', la,\ - lo-' 
and ~ a l l o ~  - 

Typical profiles are shown in figures 1 (a) and 2. These results show that the size 
of the triangle increases as t, varies from 0 to  1. As t,  +. 0, the triangle vanishes and 
the flow reduces to  a uniform stream characterized by F = 3 = 1 .  As t ,  approaches 
1,  the triangle becomes infinite. The corresponding limiting flow configuration is 
calculated in the next section. 

In figure 3 we present values of the height W of the triangle, versus the Froude 
number F .  It shows that the flows considered in this section bifurcate from the 
uniform horizontal flow a t  the critical value F = 1 of the Froude number. As the 
triangle becomes larger, the Froude number increases and in the limit as W+co,  
F+co and P+O. 

la21 - 3 x lo-,, la,l - 

4. Limiting flow configuration 
In  the last section we have shown that there is a one-parameter family of solutions 

for which the flow is subcritical upstream and supercritical downstream. The 
parameter can be chosen as the size of the triangle. As the size of the triangle 
increases, the flow near the apex of the triangle becomes similar to the flow over a 
wedge (see figure 4). We shall calculate this limiting flow configuration by using the 
numerical procedure developed by Vanden-Broeck & Keller (1986) to compute 
pouring flows. 

The upstream side of the wedge, 12, slopes a t  an angle p from the horizontal. The 
t-plane and thef-plane are the same as before with point 1 coinciding with I and point 
3 coinciding with J. As x++ co, the flow approaches the thin wall jet flow of Keller 
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FIGURE 2. Same as figure 1 (a )  with (a )  t,  0.40, F = 1.43, P = 0.68; (b )  t,  = 0.94, F = 2.49, 
F = 0.32. 
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F 

FIGURE 3. Values of the height W of the triangle versus the Froude number F 
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F I G U ~ ~ E  4. Free-surface flow over a wedge. It was calculated for p = and a2 = in. The broken line 
corresponds to  the asymptotic solution (4.5). The vertical scale is the  same as the horizontal scale. 

& Geer (1973). The singularity at point 2 is still given by (3.2).  But the singularities 
a t  I and J are now of the form 

Equation (4 .1 )  represents a source-type singularity and (4.2) a jet-type singularity. 
Equation (3.7) is now replaced by 

6 = ei("z-B-*)(l+ t)W*tl-az/"[ - In c( 1 - t)li exp c an t n  . (4.3) Co 1 
Here c is a constant. We assume that 0 < c < 0.5 so that [--In c(l -t)]i is real for 
- 1 < t < + 1. We chose c = 0.2.  We checked that the computed values of 6 evaluated 
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from (4.3) do not depend on the value of c chosen. However, different values of the 
coefficients a, are obtained for different values of c. Vanden-Broeck & Keller (1986) 
studied a similar flow with a2 = 2n. Equation (4.3) reduces to their equation (27) 
after replacing a2 by 2n and rotating the coordinate system by -in.. 

The coefficients a, are determined by using the collocation procedure described in 
$3. For given values of a2 and /3, the infinite series in (4.3) is truncated after N terms. 
N equations for the unknowns a,, . . . , aNPl ,  are obtained by requiring that Bernoulli’s 
equation be satisfied a t  N collocation points. This system of equations is solved by 
Newton’s method. 

The profile of the free surface for a2 = $n and /3 = $ is shown in figure 4. As 
X + + C O ,  the solution is described by the thin-jet theory (Keller & Geer 1973). 
If S denotes the thickness of the jet, the velocity approaches the inverse of 6. We 
define coordinates x and y with the origin at the apex of the wedge. Since S =  
-sin(a2-/3)x+cos(a2-/3) y, we have 

(4.4) -sin (aZ -/3) x + cos (a, - /3) y N 1gI-l. 
Combining (4.4) with Bernoulli’s equation (2.11) we obtain the equation for the free 
surface of the jet : 

(constant - 2~1-4. (4.5) 
1 

sin (a, - p) x---ycot(a,-p)- 

The relation (4.5) is represented by the broken curve in figure 4. The constant in (4.5) 
is obtained from the numerical results. It is interesting to compare figures 2(b)  and 
4, and to see that the solution for a large triangle is close to the limiting 
configuration, a t  least until the jet feels the bottom downstream. 

5. Solution with supercritical flows both upstream and downstream 
We now consider solutions corresponding to (2 .7) .  As explained in $2, these 

solutions are characterized by U = U ,  H = fi and F = P (see figure 5). We shall 
construct branches of solutions for which the flow is supercritical both upstream and 
downstream, i.e. F = 9 > 1. 

Since the analysis is restricted to isoceles triangles, the problem is symmetric with 
respect to the y-axis. The singularities along the obstacle are still described by 
(3.1)-(3.3). The t-plane and the f-plane remain unchanged. But now the condition 
that the flow approaches a uniform stream exponentially is prescribed both 
downstream and upstream so that 

l - E + D e T w  as #++a. (5.1) 
Here h is the smallest positive root of (3.5). 

an exact solution, namely 
For F = 00, the velocity is constant on the free surface, h = 0 and the problem has 

Here a(t) has the expansion 
m 

Q ( t )  =B(1-t2)2A\’n+ b , tZn.  
n-o 

(5.4) 
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FIauRE 5 .  Computed solution with supercritical flows both upstream and downstream, for 
t ,  = 0.5 and ( a )  F = 1.47; (b )  F = 1.43. The vertical scale is the same as the horizontal scale. 

Since the flow is symmetric with respect to the y-axis, only even powers of t  are used 
in (5.4). Furthermore, t ,  = - t ,  and a, = a3. 

The solutions described in this section depend on one more parameter than those 
studied in $3.  Therefore we specify not only the channel and obstacle geometries but 
also the Froude number. Then we solve for h and the coefficients in (5.4). We truncate 
the infinite series in (5.4) after N - 2  terms, and solve for the N unknowns: h , A ,  b,, 
b,, . . . , bNP3.  N -  2 equations are obtained by defining N - 2  collocation points equally 
spaced on the portion IP of the unit circle in the t-plane (including the point P of 
maximum elevation). An extra equation is given by (3.5). The last equation relating 
E’ and the velocity a t  infinity is given by (3.11). The rest of the computations follows 
closely the calculations of $3. Typical solutions are shown in figure 5. 
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FIGURE 6. Numerical values of the maximum elevation T of the free surface versus the Froude 
number F, for various values oft,. The curve fort, = 0 ,O  corresponds to solitary waves. The broken 
curve corresponds to  solutions with a stagnation point on the free surface (see (5.6)). 
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FIGURE 7. Values of the height W of the triangle versus the maximum elevation T of the free surface, 
for various values oft,. The broken curve corresponds to solutions with a stagnation point on the 
free surface. 

A quantity of physical interest is the maximum elevation y($) of the free surface 
at x = 0. It can be represented by the dimensionless parameter 

r is the maximum deviation of the free surface from its level at infinity divided by 
the water depth a t  infinity. I n  figure 6, we present numerical values of r versus F for 
various values of t,. The corresponding values of the height W of the triangle are 
shown in figure 7. As r increases, the Froude number first decreases to a minimum 
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value F*(t3) and then increases. Consequently, for a given t , ,  there is no solution when 
F < F*. On the other hand, for some values of F ,  there are two different solutions. 

The results shown in figure 6 are similar to those obtained by Vanden-Broeck 
(1987) for the flow past a submerged semicircular obstacle. Following his analysis we 
consider the particular case t ,  = 0 (i.e. no obstacle). A uniform stream is then a trivial 
solution for any value of F. This corresponds to  the F-axis in figure 6.  Another branch 
of solutions for t ,  = 0 corresponds to solitary waves of arbitrary amplitude. This 
branch bifurcates from the uniform stream at F = 1 and is also shown in figure 6. For 
t ,  $: 0 we denote by 7*(t ,)  the value of 7 corresponding to F*(t3) .  Then the solutions 
for 7 < 7* can be viewed as perturbation of a uniform flow while the solutions for 
7 > r* can be viewed as a perturbation of a solitary wave. 

For a given t,, there is a maximum value of 7 ,  say 7max(t3), above which no solutions 
exist. 7,,, corresponds to profiles with a stagnation point a t  P with an angle of 120" 
at  it. When t ,  = 0, these solutions reduce to the well-known highest solitary wave. 
r,,, can be expressed in terms of F by using Bernoulli's equation 

7,&, = p. (5.6) 

The curve corresponding to  (5.6) is the broken curve in figure 6. 
Both profiles shown in figure 5 correspond to t ,  = 0.5. I n  figure 5(b), the flow is 

a perturbation of a uniform flow and W = 0.40, F = 1.43. I n  figure 5(a), the flow is a 
perturbation of a solitary wave and W = 0.48, F = 1.47. 

In order to compute the limiting configurations with a stagnation point at P, we 
modify the expansion (5.3) by including the term [t(l+t2)]i to describe the 
singularity associated with the 120" angle. Thus we write 

(5.7) 

and we proceed as before. For t, = 0 the formula (5.7) reduces to the expression used 
by Hunter & Vanden-Broeck (1983) to  compute the highest solitary wave. Figure 8 
shows a limiting configuration with a 120" angle for W = 0.48 and F = 1.52. 

The expansion (5.3) was found to be inadequate to compute solutions near the 
limiting configuration because an increasing number of terms was required as the 
120" angle is approached. Therefore we used a different representation for c, namely 

This type of expansion was first proposed by Havelock (1919). It has been used 
successfully by Vanden-Broeck (1986) to compute steep gravity waves. The 
parameter p in (5.8) is found as part of the solution. For p small the expansion (5.8) 
reduces to the expansion (5.3). Furthermore, for p = 1,  (5.8) becomes (5.7). Therefore 
(5.8) combines the characteristics of the expansions (5.3) and (5.7). It was found to 
give very accurate results for all values oft,. 

6. Additional limiting flow configurations 
As the size of the triangle increases, the solutions of $5 approach limiting 

configurations with a free surface following along the walls of a wedge (see figure 9). 
We shall extend the procedure of the previous sections to  calculate these limiting 
flow configurations. 
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I I I I 

- 1  0 1 2 ! -'2 

FIGURE 8. Limiting configuration for t,  = 0.5 and F = 1.52. The height of the triangle is W = 0.48. 
There is a stagnation point on the free surface with a 120" angle at  it. The vertical scale is the same 
as the horizontal scale. 
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/ 

' I  

-2 - 1  0 1 2 
FIGURE 9. Sketch of a free-surface flow over a wedge. The solution approaches a thin jet both 
upstream and downstream. The broken curve corresponds to the asymptotic solution (4.5). The 
free surface is a computed solution with a stagnation point with a 120" angle at it, for p = $t and 
a2 = @. The vertical scale is the same as the horizontal scale. 

We denote by p the angle between the wall I2 and the horizontal (see figure 9). The 
symmetry of the problem implies that ct2 = 7~ + 2p. As 1x1 -+ 00,  the flow approaches 
the thin jet solution described in $4. The singularity a t  the point 2 is given by (3.2). 
Therefore we write 

6 = eiBtl-ae/"[-lnc(l--t2)1)exp (6.1) 
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FIGURE 10. Free surface-flow past a semi-infinite vertical wall. The velocity at the highest point of 
the free surface is g(i) = 0.5. As y+-co, the solution approaches thin jets on either sides of the 
wall. The vertical scale is the same as the horizontal scale. 

We choose c = 0.2 and determine the coefficients b, by the numerical procedure 
described in the previous sections. We note that we specify two parameters, p and 
the velocity E(i) a t  the highest point on the free surface, in order to obtain a unique 
solution. 

We consider first solutions with p = in. Then the wedge reduces to a semi-infinite 
vertical wall. A typical profile for E(i) = 0.5 is shown in figure 10. In  figure.11, we 
present numerical values of [(i) versus the distance L between the highest point on 
the free surface and the apex of the wedge. As E(i) + 00, L -+ 0 and the solution 
approaches the exact free-streamline solution : 

5 = E(i) eifltl-adz. (6.2) 

Solution (6.2) was first derived by Keller (1957). 
Integrating (6.2) we find after some algebra 

Relation (6.3) is represented by the broken line in figure 11. It shows that our 
numerical results are in good agreement with the asymptotic formula (6.3) as L --f 0. 
Solutions were found to exist for all values of [(i) 2 0. For ((i) = 0, there is a 
stagnation point on the free surface with a 120" angle a t  it. The corresponding profile 
is shown in figure 12. This solution was obtained by including the factor (1 +t2) i  in 
the expansion (6.1) to describe the singularity associated with the 120' angle and by 
following the procedure outlined at the end of $5. The value of L corresponding to 
the profile of figure 12 is indicated by a cross in figure 11.  
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FIGURE 11. Xumerical values of the velocity &i) a t  the highest point of the free surface versus the 
distance L between this point and the apex of the wedge, for /3 = in  and a2 = 2n. The broken curve 
corresponds to the asymptotic formula (6.3) and the cross to the limiting configuration with a 
stagnation point. 
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FIGURE 12. Same as figure 9 with /3 = +K and a2 = 2n. 
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Solutions 
obtained for 
p = 45" and 

-2 - 1  0 1 2 

FIQURE 13. Same as figure 9 with = 5' and a2 = 350'. 

with [ ( i )  = 0 (i.e. with a stagnation point on the free surface) were 
' various values of p. In  figures 9 and 13 we present the solution for 
p = 5". As p+O, the flow approaches the highest solitary wave. 
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